Как отправляются сообщения по радиоволнам кратко
Перейти к содержимому

Как отправляются сообщения по радиоволнам кратко

  • автор:

Радиоволны, свойства и принцип распространения

Радиоволны как электромагнитные колебания, распространяющиеся в пространстве со скоростью света. История открытия радиоволн и изобретения радио. Принцип распространения длинных и коротких волн, основные свойства. Понятие о радиосвязи и телевидении.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 07.05.2015
Размер файла 600,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Что такое радиоволны

Радиоволны — это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек).

Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

2. История открытия

О радиоволнах впервые в своих работах в 1868 году рассказал Джеймс Максвелл. Он предложил уравнение, которое описывает световые и радиоволны, как волны электромагнетизма.

В 1886 году Генрих Герц экспериментально подтвердил теорию Максвелла, получив в своей лаборатории радиоволны длиной в несколько десятков сантиметров. Герц получал электромагнитные волны, возбуждая в вибраторе с помощью источника высокого напряжения серию импульсов быстропеременного тока. Колебания электрических зарядов в вибраторе создают электромагнитную волну.

7мая 1895года А.С.Попов доложил Русскому физико-химическому обществу об изобретении прибора, могущего улавливать грозовые разряды. 24 марта 1896года, используя эти волны, он передал на расстояние 250м первую в мире радиограмму из двух слов «Генрих Герц».

Изобретение радио А.С. Поповым

После описания опытов Герца в 1888 году, которые заинтересовали физиков всего мира, ученые стали искать пути усовершенствования излучателя и приемника электромагнитных волн.

Начав с воспроизведения опытов Герца, Попов вскоре начал использовать другой способ регистрации электромагнитных волн: он начал использовать когерер (от лат. — “когеренция” — “сцепление”). Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки. Принцип действия прибора основан на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Последовательно с когерером включаются электромагнитное реле и источник постоянного напряжения. Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты.

Между опилками проскакивают мельчайшие искорки, в результате сопротивление когерера резко падает (в 100-200 раз). Сила тока в катушке электромагнитного реле возрастает, и оно включает звонок. Молоточек звонка, ударяя по когереру, встряхивает его и возвращает в исходное состояние. С последним встряхиванием когерера аппарат готов к приему новой волны.

7 мая 1895 г. является днем рождения радио. На заседании Русского физико-химического общества Попов продемонстрировал действие своего прибора. Это был первый в мире радиоприемник. Но Александр Степанович на этом не остановился, и продолжал совершенствовать свой прибор, а так же передатчик.

Радиоприёмник — устройство, соединяемое с антенной и служащее для осуществления радиоприёма. Радиопередатчик— устройство для формирования радиочастотного сигнала.

радиосвязь волна электромагнитный телевидение

3. Как распространяются радиоволны

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.

Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волны (выше частота). Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.

Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.

Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.

Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха — естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой. Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.

Распространение длинных и коротких волн

Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.

Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25-30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.

Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.

4. Свойства радиоволн

7. Короткие волны хорошо отражаются от ионосферы

8. Ультракороткие волны проникают через ионосферу

5. Принципы радиосвязи

Радиосвязь, электросвязь посредством радиоволн. Переменный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружающем пространстве быстроменяющееся электромагнитное поле, которое распространяется в виде электромагнитной волны. Достигая приемной антенны, электромагнитная волна вызывает в ней переменный ток той же частоты, на которой работает передатчик.

6. Понятие о телевидении

Принцип передачи изображения на расстоянии состоит в следующем. На передающей станции производится преобразование изображения в последовательность электрических сигналов. Этими сигналами модулируются колебания, вырабатываемые генератором высокой частоты. Модулированная электромагнитная волна переносит информацию на большие расстояния. В приемнике производится обратное преобразование. Высокочастотные модулированные колебания детектируются, а полученный сигнал преобразуется в видимое изображение.

Размещено на Allbest.ru

Подобные документы

Радиоволны, распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы. Электромагнитные волны с частотами, использующиеся в традиционной радиосвязи. Преимущества работы на коротких волнах.

презентация [6,5 M], добавлен 13.03.2015

Радиосвязь как передача и прием информации с помощью радиоволн, распространяющихся в пространстве без проводов, ее разновидности и сферы практического применения на сегодня. Физические основы телевизионной передачи изображений. История изобретения радио.

презентация [427,9 K], добавлен 23.04.2013

История исследования электромагнитных волн различной длины, их общая характеристика и свойства. Особенности распространения волн коротковолнового диапазона, поверхностных и пространственных радиоволн. Сверхдлинные, длинные, средние и короткие волны.

реферат [1,6 M], добавлен 17.03.2011

Устройство общих схем организации радиосвязи. Характеристика радиосистемы передачи информации, в которой сигналы электросвязи передаются посредством радиоволн в открытом пространстве. Особенности распространения и области применения декаметровых волн.

реферат [1,3 M], добавлен 10.07.2010

Общая классификация радиоволн по диапазонам и областям применения. Диапазоны радиочастот и радиоволн, установленные международным регламентом радиосвязи. Механизмы и зоны распространения. Особенности распространения устройства декаметрового диапазона.

Как данные передаются по радио?

В одном из комментариев к предыдущим статьям был задан вопрос, можно ли по виду сигнала определить вид его модуляции. Идея рассмотреть основные виды модуляции показалась довольно-таки интересной.

Попробуем разобраться, без формул и максимально просто, как можно передать данные из точки «А» в точку «В».

OOK (On-Off Keying)

Самый простой вид цифрового кодирования. Просто включаем-выключаем передатчик в соответствии с двоичным сигналом:

На спектре такой сигнал выглядит примерно так, их довольно много на частоте

Схема передатчика очень проста, поэтому активно используется в беспроводных пультах, радиокнопках и прочих устройствах ценой 1-2$. Никакого шифрования здесь обычно нет, частота и битовая последовательность жестко «зашиты», передать и принять сигнал может любой желающий, так что ставить такой пульт на дверь гаража, где стоит Lamborgini, я бы не стал, но для ночника у кровати вполне сойдет (такая лампа, купленная в ближайшем MediaMarkt, работает у меня 3 года, ложных срабатываний не было ни разу, принцип «неуловимого Джо» в действии).

Интересно отметить, что исторически это наверное один из самых первых способов радиопередачи. Если включать-выключать передатчик с помощью ключа и принимать сигнал на слух или на бумажную ленту, мы получим старую добрую азбуку Морзе.

Амплитудная модуляция (АМ)

АМ мы наверное сможем видеть еще долго — модуляция используется как в вещательных станциях, так и в передатчиках авиадиапазона 118-137 МГц. Отличительная особенность АМ — спектр симметричен относительно центральной частоты. «На глаз» даже можно примерно понять, что передается, речь или музыка. Скриншот из онлайн приемника Websdr Twente:

Исторически АМ был одним из первых способов приема и передачи речи — всем известная «школьная» схема детекторного приемника отличалась крайней простотой, и даже не требовала батареек для приема — для работы высокоомных наушников было достаточно энергии радиоволн. Любопытно, что такие приемники выпускались в СССР серийно аж до 60х годов:

Детекторный приемник «Комсомолец» (с) Википедия

Видимо, с доступностью как приемников, так и источников питания в глубинке были определенные проблемы, так что детекторный приемник долго оставался актуален.

Однополосная модуляция (USB, LSB, SSB)

Однополосная модуляция является частным случаем амплитудной. Как было сказано выше, спектр АМ сигнала симметричен относительно центра. Но можно передавать лишь «одну половину» сигнала, что обеспечивает большую дальность при той же мощности передатчика:


Однополосная модуляция (с) Википедия

Как видно из картинки, можно настроиться на верхнюю или нижнюю боковую полосу, такой режим в приемнике или передатчике соответственно обозначается USB или LSB.

В режиме однополосной модуляции работают служебные станции, передаются метеосводки на коротких волнах, также он используется радиолюбителями. Но не менее важен он еще и тем, что в режиме USB или LSB спектр сигнала фактически переносится с радиочастоты на звуковую без искажений — что позволяет принимать различные виды цифровых сигналов, рассмотренных ниже. Это важно иметь в виду при выборе радиоприемника — цифровые виды связи (FSK, PSK и пр) могут приниматься и декодироваться лишь в режиме однополосной модуляции, простой бытовой приемник с поддержкой «обычной» AM принять такие сигналы не сможет.

Частотная модуляция (FM)

В частотной модуляции работает всем известное FM-вещание. Интересно отметить, что в передатчике FM-станции кодируется не только звук — передается сложный сигнал, включающий моно и стерео каналы, пилот-тон, RDS и пр. Чтобы не путать с «обычной» FM, у инженеров такая модуляция обычно называется WFM (Wide FM). В программе HDSDR несложно увидеть спектр радиостанции после декодирования:

На сигнале (справа снизу) несложно видеть пилот-тон на частоте 19 КГц, RDS, моно и стерео-каналы FM-вещания. В отличие от WFM, радионяни, рации и прочие аналогичные устройства используют «узкую» FM (NFM, Narrow FM) модуляцию, где передается только звук.

Частотная модуляция активно используется и для цифровых сигналов, в этом случае для передачи бинарного кода может использоваться переключение двух частот. В качестве примера можно привести сигнал немецкой станции Pinneberg, наличие двух частот хорошо видно на спектре:

Pinneberg передает метеосводки судам на длинных, средних и коротких волнах. Частот в принципе, может быть и больше 2х. Пример такого сигнала — радиолюбительский FT8:

С помощью FT8 радиолюбители могут обмениваться короткими сообщениями на расстоянии в несколько тысяч километров при мощности всего лишь несколько ватт.

Интересно, что модуляция может быть и комбинированной — например в авиации используется система ACARS, передающая текстовые сообщения. Цифровой FM сигнал передается через АМ передатчик. Зачем так сложно? Вероятно, используется уже готовый передатчик, ко входу которого просто подключили цифровую схему, формирующую FM-сигнал. Legacy в чистом виде, но вероятно, это дешевле, чем менять миллионы передатчиков в аэропортах и самолетах во всем мире.

Фазовая модуляция (PSK)

Кроме частоты, мы можем менять и фазу сигнала, что дает нам фазовую модуляцию. Такие сигналы могут уверенно приниматься на больших расстояниях, и используются в частности, в спутниковой связи. Из радиолюбительских протоколов можно отметить PSK31, который одно время был весьма популярен.

С помощью PSK31 можно обмениваться информацией в виде «текстового чата», подключив трансивер к компьютеру. Фаз может быть больше 2х, например 4, 18 или 16, все зависит от скорости и канала связи.

Можно менять и фазу и амплитуду одновременно, что дает нам еще большую скорость, но требует более сложного кодирования и декодирования. В качестве примера такого сигнала можно привести QAM. Такой сигнал наглядно проще всего изобразить на фазовой плоскости:

Модуляция QAM используется при передаче данных в стандарте LTE и в цифровом телевидении DVB-T.

Orthogonal frequency-division multiplexing (OFDM)

Одним из современных методов модуляции является OFDM. Его суть состоит в том, что отдельные биты сигнала можно передавать параллельно, представляя сигнал в виде независимо работающих частотных каналов (subcarriers), каждый из которых передает свой отдельный бит. Есть определенные математические правила, гарантирующие что каналы не будут пересекаться и могут быть декодированы.

В качестве примера можно привести DRM, сигналы такого формата можно увидеть на вещательных диапазонах, разница между АМ и DRM хорошо видна на спектре:

Это цифровой сигнал шириной 10 КГц, в котором параллельно передается 206 несущих с интервалом 47 Гц. Стандарт DRM (Digital Radio Mondiale) используется для передачи цифрового радио на средних и коротких волнах, просьба не путать с другим стандартом Digital Rights Management.

OFDM используется и в WiFi (802.11a), структура сигнала там сложнее, желающие могут изучить PDF самостоятельно.

Code-division multiple access (CDMA)

Другой способ широкополосной передачи — разделение данных. Данные для нескольких получателей могут быть комбинированы в один сигнал с помощью специальной функции (например Walsh code), которая гарантирует как прямое, так и обратное преобразование. Одним из ключевых факторов и в OFDM и в CDMA является так называемая «ортогональность», получаемые сигналы не должны «смешиваться», чтобы из результирующего сигнала можно было извлечь исходные данные.

Кодирование CDMA используется в мобильных сетях 3G. Хороший пример разбора CDMA с помощью ручки и бумаги можно найти здесь, интересующимся рекомендую посмотреть.

Заключение

Все что приведено выше, это разумеется, очень краткое объяснение «на пальцах», в реальности, описание только одного декодера может занять в несколько раз больше текста чем вся статья целиком, да и вряд ли многим здесь это нужно — Хабр это все же не научный журнал. Впрочем, общее впечатление у читателей надеюсь все же осталось. При наличии интереса у аудитории (что будет определяться по оценкам текста:) какой-либо из сигналов можно будет разобрать более подробно.

В завершение интересно отметить, что различные схемы кодирования — это не просто какая-то математическая абстракция — все это активно используется, в том числе и в военных целях (например протокол STANAG модемов NATO). Этот скриншот сделан во время написания текста с помощью онлайн-приемника Websdr:

Как можно видеть, несмотря на наличие интернета практически в любой обитаемой точке планеты, возможность передать данные напрямую, анонимно и без посредников, весьма актуальна — каждая линия на графике это работающий прямо сейчас канал связи (и да, внимательные читатели могут заметить здесь даже сигналы азбуки морзе, несмотря на 2020 год).

3. Основы радиосвязи

Радиосвязь ‑ вид связи, осуществляемой посредством радиоволн, т.е. это обмен сообщениями между двумя и более абонентами с помощью электрических сигналов, переносимых через пространство радиоволнами. В основе радиосвязи лежит преобразование электрической энергии высокой частоты в электромагнитные колебания радиопередатчиком, распространение их (радиоволн) в пространстве и обратное преобразование радиоприемником электромагнитных колебаний (радиоволн) в электрические колебания [1].

В зависимости от формы сообщений различают телефонную, теле­графную и телевизионную радиосвязь.

На рис. 3.1 показана структурная схема радиосвязи. Микрофон (М) преобразует звуковые колебания речи в электрические колебания тока звуковой (низкой) частоты. Одним из основных блоков радиопередатчика является задающий генератор (ЗГ) (или генератор высокой частоты), преобразующий энергию постоянного тока (специального источника питания) в энергию колебаний токов высокой частоты (ВЧ). Усиленный в усилителе низкой частоты (УНЧ) ток звуковой частоты поступает на модулятор (Мод), воздействуя на один из параметров (амплитуду, частоту или фазу) тока высокой частоты, вырабатываемого задающим генератором. В результате в антенну передатчика подаются токи высокой частоты (радиочастоты), изменяющиеся по амплитуде, частоте или фазе в соответствии с передаваемыми звуковыми колебаниями (передаваемым первоначальным сообщением). Процесс воздействия на один из параметров ВЧ-сигнала по закону изменения передаваемого первоначального сообщения называется модуляцией, соответственно амплитудной, частотной или фазовой.

Рис. 3.1. Структурная схема радиосвязи

В ряде случаев, когда зона устойчивой связи радиостанции не охватывает требуемой территории, построение сети радиосвязи предусматривает применение ретрансляторов, что позволяет в целом увеличить дальность радиосвязи (рис. 3.2) [1]. Ретранслятор представляет собой двойной комплект приемопередающей аппаратуры и является дуплексным устройством, то есть прием и передача осуществляются одновременно. Ретранслятор принимает сигнал на частоте F1, усиливает его и передает на частоте F2. Время, затрачиваемое на обработку сигнала, считается пренебрежимо малым. Частота передач всех абонентских станций, работающих через ретранслятор, равна F1, частота приема – F2. Абонентские радиостанции работают при этом в режиме двухчастотного симплекса (полудуплекса).

Рис. 3.2. Схема организации радиосвязи с использованием ретранслятора

Ретрансляторы являются структурными элементами радиорелейных линий связи (РРЛ). Радиорелейная связь (от франц. relais: промежуточная станция) – радиосвязь, осуществляемая при помощи цепочки приёмо-передающих радиостанций, как правило отстоящих друг от друга на расстоянии прямой видимости их антенн (рис. 3.3). Каждая такая станция принимает сигнал от соседней станции, усиливает его и передаёт дальше, следующей станции. РРЛ позволяют организовать многоканальную передачу информации. При необходимости любой ретранслятор может выполнять функции узла, где происходит ответвление части каналов.

В радиорелейной связи используются дециметровые и сантиметровые волны, реже волны метрового диапазона. Диапазоны ДМВ и СМВ волн выбраны потому, что в них возможна одновременная работа большого числа каналов с шириной спектра сигналов до нескольких десятков мегагерц, низок уровень атмосферных и индустриальных помех радиоприёму, возможно применение направленных антенн. Так как устойчивое распространение ДМВ и СМВ происходит только в пределах прямой видимости, то для связи на больших расстояниях необходимо сооружать значительное количество ретрансляционных станций. Для того чтобы расстояние между станциями было как можно больше, их антенны устанавливают на мачтах или башнях высотой 70-100 м, по возможности на возвышенных местах. На равнинной местности расстояние между станциями обычно составляет 40-50 км, а применение (в отдельных звеньях цепочки или в качестве линии) станций тропосферной радиосвязи позволяет увеличить это расстояние до 250-300 км на одном ретрансляционном участке, т.к. при организации тропосферной связи не требуется наличие прямой видимости между антеннами.

Рис. 3.3. Структурная схема радиорелейной линии связи (РРЛ)

Обычно на ретрансляционных пунктах устанавливают несколько комплектов приёмо-передающей аппаратуры, размещаемых в едином техническом здании и использующих общие источники электропитания, мачтовые опоры антенн. Таким образом, на линии создаётся несколько стволов (групповых трактов) связи и увеличивается её пропускная способность. Для одновременной передачи сигналов в радиорелейной связи применяют частотное и временное разделение каналов.

Для организации радиорелейной (тропосферной) связи необходимо использование дуплексной связи, причем в пунктах ретрансляции назначение пар частот (приема и передачи для каждого абонента) осуществляется с учетом электромагнитной совместимости, чтобы передатчики любого из полукомплектов ретрансляционной станции не воздействовали на свои приемники.

Линии радиорелейной связи разделяют на линии большой емкости – магистральные, средней емкости – зоновые, малоканальные – для связи на железнодорожном транспорте, газопроводах, нефтепроводах, системах передачи электроэнергии и т.п.

Преимущества радиосвязи над проводной

Быстрое развертывание на любой местности в любых условиях.

Высокая оперативность и живучесть.

Возможность передачи сообщений любому количеству абонентов как циркулярно, так и избирательно.

Как работает радиоприемник

Радио внезапно появилось в жизни человечества и легло в основу многих средств передачи информации, которыми люди пользуются ежедневно. Но радиопередача применяется и в своем первозданном, но доработанном виде. По какому принципу оно работает?

Краткое описание работы устройства

Радио построено на принципе беспроводной передачи данных. Радиоволна в данном случае служит в качестве носителя информации.

Радиоволна – это изменение электромагнитного поля, которое распространяется в пространстве. По своей сути радиоволны, как и свет, являются электромагнитным излучением. Разница заключается в длине волны и ее частоте.

В передающую сторону (радиопередатчик) вносится информационный сигнал (предупреждение, музыка или любой другой звук), который передается благодаря процессу модуляции частоты. Изменение параметров несущей частоты возникает из-за информационного сигнала, а модулированный сигнал распространяется в пространстве в виде радиоволн.

Стороной приема является радиоприемник, в котором волны корректируют модулированный сигнал в антенне. Фильтровая система выделяет сигнал назначенной частоты из некоторого количества передатчиков и других источников радиоволн, детектор (демодулятор) в это время акцентируется на информационный сигнал, исходящий из модулирующего. Допустимы искажения сигнала из-за влияния различных помех.

Термин «Радио» ввел физик и химик сэр Уильям Крукс в 1873 году, но использовал его для обоснования некоторых результатов своих химических экспериментов, так как до изобретения радио было еще около 20 лет.

Первый патент наподобие радио оформил стоматолог Малон Лумис в 1872 году. В 1866 году он заявил, что нашел новый метод передачи связи без проводов. В Соединенных Штатах убеждены, что изобретение радио принадлежит Дэвиду Хьюзу и Томасу Эдисону (запатентовал изобретение в 1885 году), а также Николе Тесле, который в 1891 получил патент на передающее устройство с резонанс-трансформатором. В России и странах бывшего СССР считается, что изобретение радио – заслуга Александра Степановича Попова и Якова Наркевича-Иодко.

Приемник А.С.Попова

Виды радиоволн и частоты

На данный момент существует 11 видов радиоволн, рассмотрим тщательнее каждый вид.

Декамегаметровые

Декамегаметровые волны относятся к сверхдлинным (СДВ). Длина от 10000 до 100000 километров при частоте от 3 до 30 Гц, что соответствует крайне низкой частотам (КНЧ). Используются для связи с подводными лодками и геофизических исследований.

Мегаметровые

Мегаметровые волны относят к сверхдлинным (СДВ), а их длина колеблется от 1000 до 10000 километров при частоте 30-300 Гц. Соответствует сверхнизким частотам (СНЧ).

Гектокилометровые

Гектокилометровые волны являются сверхдлинными (СДВ). Длина от 100 до 1000 километров и частота от 300 до 3000 Гц соответствует инфранизким частотам (ИНЧ). Нашли применение для передачи и приема сигнала на подводные лодки и исследованиях атмосферы.

Мириаметровые

Мириаметровые волны также называют сверхдлинными (СДВ). Длина от 10 километров до 100 километров, а частота – от 30 кГц до 3 кГц, соответствует очень низким частотам (ОНЧ). Применимы для связи с подводными лодками, службы точного времени, дальней радионавигации и грозопеленгации.

Километровые

Другое название километровых волн – длинные (ДВ). Длина – от 10 километров до 1 километра, частота – от 30 кГц до 300 кГц. Являются волнами с низкой частотой (НЧ). Значительно поглощаются ионосферой. Огибают Землю, вследствие чего основную значимость имеют приземные длинные волны. Интенсивность относительно быстро уменьшается по мере удаления от источника.

Гектометровые

Гектометровые или средние волны (СВ). Длина колеблется от 100 метров до 1 километра, а частота – от 3 МГц до 300 кГц. Их поглощает ионосфера чаще всего в дневное время, район действия определен приземной волной. В вечернее время средние волны отражаются от ионосферы, но район действия остается тот же.

Декаметровые

Декаметровые или короткие волны (КВ) распространяются благодаря ионосфере, из-за чего возле передатчика образуется зона радиомолчания. В дневное время лучше проходят волны короче (30 МГц), а ночью – длиннее (3 МГц).

Метровые

Обозначение МВ принадлежит метровым волнам, которые относятся к ультракоротким. Длина волны от 10 до 1 метра, частота колеблется от 30 до 300 МГц, соответствует очень высоким частотам (ОВЧ). Применяются в радиолокации, телевидении, радиовещании, радиосвязи.

Дециметровые

Дециметровые волны обозначены ДМВ, относятся так же, как и метровые, к ультракоротким. Длина колеблет от 1 метра до 10 сантиметров, частота – от 300 МГц до 3 ГГц. Данная частота соответствует ультравысоким частотам (УВЧ). Дециметровые радиоволны нашли применение в сотовой связи, беспроводном интернете (Wi-Fi), радиолокации, радиорелейной связи и телевещании.

Сантиметровые

Сантиметровые волны (СМВ) является ультракороткими. Длина колеблется от 10 сантиметра до 1 сантиметра. Частота в диапазоне от 3 ГГц до 30 ГГц, соответствует сверхвысоким частотам (СВЧ). При частоте 5,8 ГГц данные волны находят свое применение в радиоуправляемом авиамоделизме, цель которой – пилотирование по изображению видеокамеры. Используется для электронно-циклотронного нагрева плазмы в токамаках (30 ГГц). Также применяется для связи пилотов космических аппаратов на орбите Земли и наземных коллег, спутниковом телевидении, но в диапазонах от 3,4 ГГц до 8 ГГц (диапазон C), от 12 ГГц до 18 ГГц (диапазон Ku).

Миллиметровые

Миллиметровые волны (ММВ) имеют длину от 10 миллиметров до 1 миллиметра и частоту от 30 ГГц до 300 ГГц, что соответствует крайне высоким частотам (КВЧ).

Радиоприемник

Диапазоны частот

Как было описано выше, различные волны имеют разные частотные диапазоны. Выделим главные:

  1. Ультракороткие. К ним относят метровые, дециметровые, сантиметровые и миллиметровые волны. Распространение происходит преимущественно в пределах прямой видимости. Отсутствует зеркальное отражение от ионизированного слоя Земли, но значительное воздействие оказывает нижний слой планеты (тропосфера). В тропосфере возникает изменение направления (рефракция) луча радиоволн. Способны отразиться от небесного тела (например, от ближайшей планеты) и вернуться на Землю, но в большинстве случаев уходят в космос.
  2. Короткие. К этой категории относятся только декаметровые волны. Способны отражаться от ионизированного слоя планеты с минимальными потерями
  3. Средние. К ним относятся гектометровые волны. Их распространение происходит на большие расстояния (до нескольких тысяч километров), так как способны огибать поверхность Земли, ночью отражаясь от ионизированного слоя.
  4. Длинные. Включают в себя километровые волны, которые распространяются на 1-2 тысячи километров благодаря дифракции радиоволн на сферической земной поверхности. После дифракции распространение продолжается из-за сферического волновода и его направляющего действия. Не отражаются, огибают планету.
  5. Сверхдлинные. Объединенное понятие для мириаметровых, гектокилометровых, мегаметровых и декамегаметровых волн. С легкостью огибают Земной шар, почти не поглощаются поверхностью Земли, отражаются от ионосферы и проникают на большую морскую глубину. Применение ограничено из-за сложной конструкции антенн, требуемых для работы с данными волнами.

Какие волны используются в сфере радиовещания и телевидения

В сфере радиовещания и телевидения используются длинные (километровые), средние (гектометровые), короткие (декаметровые) и ультракороткие (метровые, дециметровые и сантиметровые) волны, которые также применимы и в других областях жизни. Например, дециметровые – в микроволновых печах, спутниковой навигации, мобильных телефонах, сантиметровые – для Интернет-соединения.

Радио ФМ: на какой волне работает, особенность передачи

Радио ФМ – вид аналоговой модуляции, при котором информационный сигнал управляет частотой несущего колебания. Происходит от английского frequency modulation. В России аналогом ФМ выступает радио ЧМ. Используется для качественной передачи звукового (низкочастотного) сигнала в радиоэфире (в диапазоне ультракоротких волн).

Создание радио стало большим толчком для исследования и развития электричества, а также легло в основы электроники. Благодаря электронике возникла вычислительная техника, которой мы пользуемся ежедневно. Раньше люди справлялись сами с научными, контрольными и тестовыми работами, порой в ущерб своим достижениям в других областях. В наше время при возникновении трудностей с учебой учащемуся всегда готова помочь команда профессионалов Феникс.Хелп.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *